LLM Foundations (LLM Bootcamp)

LLM Foundations (LLM Bootcamp)

In this video, Sergey covers the foundational ideas for large language models: core ML, the Transformer architecture, notable LLMs, and pretraining dataset composition. Download slides from the bootcamp website here: https://fullstackdeeplearning.com/llm-bootcamp/spring-2023/llm-foundations/ Intro and outro music made with Riffusion: https://github.com/riffusion/riffusion Watch the rest of the LLM Bootcamp videos here: https://www.youtube.com/playlist?list=PL1T8fO7ArWleyIqOy37OVXsP4hFXymdOZ 00:00 Intro 00:47 Foundations of Machine Learning 12:11 The Transformer Architecture 12:57 Transformer Decoder Overview 14:27 Inputs 15:29 Input Embedding 16:51 Masked Multi-Head Attention 24:26 Positional Encoding 25:32 Skip Connections and Layer Norm 27:05 Feed-forward Layer 27:43 Transformer hyperparameters and Why they work so well 31:06 Notable LLM: BERT 32:28 Notable LLM: T5 34:29 Notable LLM: GPT 38:18 Notable LLM: Chinchilla and Scaling Laws 40:23 Notable LLM: LLaMA 41:18 Why include code in LLM training data? 42:07 Instruction Tuning 46:34 Notable LLM: RETRO 2023-06-20T11:17:48Z1280 https://www.youtube.com/embed/MyFrMFab6bo

0 comments

Leave a comment

#WebChat .container iframe{ width: 100%; height: 100vh; }